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Background: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic
heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired
compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in
the nonverbal domain.
Methods: To study brain substrates underlying cognitive imbalance in ASD, we capitalized categorical and dimensional IQ profiling
as well as multimodal neuroimaging.
Results: IQ analyses revealed a marked verbal to nonverbal IQ imbalance in ASD across 2 datasets (Dataset-1: 155 ASD, 151 controls;
Dataset-2: 270 ASD, 490 controls). Neuroimaging analysis in Dataset-1 revealed a structure–function substrate of cognitive imbalance,
characterized by atypical cortical thickening and altered functional integration of language networks alongside sensory and higher
cognitive areas.
Conclusion: Although verbal and nonverbal intelligence have been considered as specifiers unrelated to autism diagnosis, our results
indicate that intelligence disparities are accentuated in ASD and reflected by a consistent structure–function substrate affecting
multiple brain networks. Our findings motivate the incorporation of cognitive imbalances in future autism research, which may help
to parse the phenotypic heterogeneity and inform intervention-oriented subtyping in ASD.

Key words: autism; verbal and nonverbal IQ; multimodal neuroimaging; neurosubtyping; cognitive imbalance.

Introduction
A mounting literature emphasizes that one critical chal-
lenge to diagnostic and research advances in autism
spectrum disorder (ASD) is phenotypic heterogeneity in
cognitive and sensory processing (Lombardo et al. 2019;
Hong et al. 2020). It ranges from deficits to normal, or
even enhanced, abilities compared with typically devel-
oping individuals (Mottron et al. 2006), suggesting that
the “disorder” term inherent to ASD may not equally
qualify for all diagnosed individuals (Baron-Cohen 2017).
Merging all individuals on the spectrum can, thus, poten-
tially miss clinically important ASD subgroups, or blur

common autism phenotypes (Lai et al. 2013; Lombardo
et al. 2019; Mottron and Bzdok 2020). Ultimately, these
challenges may hinder the ability to understand mech-
anisms of atypical function, and to develop therapies in
autism.

ASD heterogeneity is particularly apparent when
considering the variability in nonverbal and verbal com-
petences (Munson et al. 2008). Prior studies show that
verbal and nonverbal intelligence quotient (IQ) measures
are highly heterogeneous, dramatically change during
brain development, and are sometimes more discrepant
among children with ASD compared with typically
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developing children (Joseph et al. 2002; Coolican et al.
2008; Ankenman et al. 2014; Lord et al. 2015; Nowell et al.
2015). In support of such increased discrepancy between
verbal and nonverbal IQ, individuals with ASD who
experience speech onset delay may perform adequately,
or often even better than neurotypicals, on tasks that do
not require verbal skills and target nonverbal perceptual
reasoning (Dawson et al. 2007). Conversely, individuals
with ASD who present with verbal abilities that are com-
parable with neurotypicals often show atypical sensory-
perceptual processing (Bonnel et al. 2010; Samson et al.
2015). Although there has been debate about an overall
diagnostic utility of cognitive imbalances in ASD (Lennen
et al. 2010; Clements et al. 2020), it is commonly indicated
that this atypical trait seems to affect at least a subgroup
of ASD. Recognizing the importance, several clinical stud-
ies have assessed cognitive imbalances based on a ratio
of verbal to nonverbal IQ (vnIQ), and reported significant
IQ discrepancies in ASD at the group level (Caron et al.
2006; Ankenman et al. 2014; Nader et al. 2015).

Although neural substrates underlying cognitive
imbalances in ASD remain to be investigated, it has
been postulated that different functional systems may
atypically compete during brain development in ASD,
possibly due to altered synaptogenesis and neural
plasticity (Mottron et al. 2014). Such a broad mechanism
may affect the organization of multiple cortical areas,
including sensory-motor, language, as well as higher
cognitive regions (Silbereis et al. 2016). Neuroimaging,
especially multimodal magnetic resonance imaging
(MRI), allows for the study of typical and atypical brain
organization and development in vivo (Betzel and Bassett
2017; Lerch et al. 2017; Gilmore et al. 2018; Larivière et al.
2019). Indeed, surface-based MRI analysis can examine
morphological variations of cortical areas (Raznahan
et al. 2010; Valk et al. 2015; Hong et al. 2018; Bedford et al.
2020), and resting-state functional MRI (rs-fMRI) taps
into cortico–cortical connectivity (Di Martino et al. 2011,
2014; Müller et al. 2011; Craddock et al. 2012; Keown et al.
2013). At the level of brain structure, several studies have
converged on the patterns of atypical cortical thickness
increases in ASD relative to controls, in a spatial distribu-
tion largely affecting frontal and temporal lobe regions
(Hardan et al. 2006; Valk et al. 2015; van Rooij et al.
2018; Bedford et al. 2020). Findings have, nevertheless,
been somewhat inconsistent, with other work showing
cortical thickness decreases (Wallace et al. 2010) or
no significant findings (Haar et al. 2016). Inconclusive
results have also been reported at the level of functional
connectivity based on rs-fMRI analysis, revealing mosaic
patterns of both under- and over-connectivity in ASD
groups relative to neurotypicals (Müller et al. 2011; Di
Martino et al. 2014). Recognizing this challenge, recent
studies have performed data-driven decomposition on
heterogeneous brain patterns in ASD. These approaches
identified coherent patterns of brain phenotypes from
subgroups of ASD, either based on categorical clustering
approaches or by projecting brain imaging features
onto entirely continuous dimensions representing a

biological spectrum of this condition (Lombardo et al.
2019; Hong et al. 2020). Quantifying inherent variability
within groups diagnosed with ASD, these findings
highlight potential limitations of conventional case-
control group comparisons in revealing heterogenous
cerebral substrates associated to the condition.

Despite many prior neuroimaging studies having
employed a variety of statistical tools to unveil atypical
structure and connectivity in ASD, studies rarely took
into consideration cognitive discrepancies as potential
modulators of brain organization. Work in neurotypical
individuals has suggested that discrepant IQ pro-
files may relate to variations in structural (Margolis
et al. 2013) and functional brain network organization
(Margolis et al. 2018). These relationships and their
structural correlates, however, have not been assessed
in ASD. To fill this gap, we assessed structural and
functional network substrates of cognitive imbalances
in ASD, capitalizing on multimodal neuroimaging and
connectomics. Analysis of cognitive phenotypes included
categorical and dimensional decompositions of verbal
and nonverbal IQ profiles, together with an assessment
of nvIQ ratios. Analyses were regionally unconstrained,
operating at a cortex- and connectome-wide level. We,
nevertheless, hypothesized in light of previous studies
(Kleinhans et al. 2008; Eyler et al. 2012; Lindell and Hudry
2013) that the imbalance of verbal and nonverbal IQ
dimensions in ASD would particularly manifest in the
structure and functional connectivity of the language
network. Although we expected those significant brain
anomalies in ASD to be discovered at the group level, the
dominant effects were primarily hypothesized to relate
to ASD subtypes with more severe cognitive imbalances.

Materials and methods
Participants
Dataset-1

We studied a subsample of individuals with ASD and
neurotypical individuals from the 2 waves of the Autism
Brain Imaging Data Exchange initiative (ABIDE-I and
-II; Di Martino et al. 2014, 2017). Inclusion criteria
resembled our prior studies (Valk et al. 2015; Hong
et al. 2019a; 2019b; Park et al. 2021). Specifically, we
restricted our assessment to those sites that included
both children and adults, with ≥10 individuals per
diagnostic group (n = 406, 203/203 ASD/controls). Data
availability and detailed quality control criteria were
then used to select only the cases with verbal/perfor-
mance IQ scores and acceptable MRI quality (see below).
This screening resulted in 306 individuals (155 ASD
[age mean ± SD = 17.9 ± 8.6, 150 males], 151 controls
[age = 17.7 ± 7.3, 150 males]) from 4 different sites: (i)
NYU Langone Medical Center (NYU, 65/70 ASD/controls);
(ii) University of Utah, School of Medicine (USM, 52/40
ASD/controls); (iii) University of Pittsburgh, School of
Medicine (PITT, 20/22 ASD/controls); and (iv) Trinity
Centre for Health Sciences, Trinity College Dublin (TCD,
18/19 ASD/controls).
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Table 1. Demographic information.

Dataset-I (306) Dataset-II (760)

ASD(155) Controls (151) ASD(270) Controls (490)

Age (year) 17.9 ± 8.6(5.2–50.2) 17.7 ± 7.3(5.9–39.4) 15.7 ± 7.1(5.9–55.4) 12.2 ± 4.1(5.9–30.7)
Sex (male) 150 150 240 362
Intelligence
quotient (IQ)

Full 105 ± 16 115 ± 13 108 ± 16 113 ± 13
Verbal 103 ± 17 114 ± 13 109 ± 17 114 ± 14
Nonverbal 106 ± 17 113 ± 13 107 ± 16 110 ± 14

Dataset-2

After screening the cases for Dataset-1, the remaining
samples from ABIDE-I and ABIDE-II (n = 1920) became
candidates to replicate the IQ profiling (Dataset-2). From
these cases, we excluded those without IQ or ADOS
scores (as these measures are the main target of our
analyses), which resulted in 760 cases (=270/490 [ASD/-
controls]). Notably, this dataset was overall younger com-
pared with Dataset-1. Therefore, although these samples
covered a similar age range than Dataset-1, the demo-
graphic difference should be considered when interpret-
ing the results of replication analyses in the later section.

Sociodemographic details for Dataset-1 and Dataset-2
are presented in Table 1.

Individuals with ASD underwent in-person interviews
and had a diagnosis of Autistic, Asperger’s, or Perva-
sive Developmental Disorder Not-Otherwise-Specified
established by expert clinical opinion aided by “gold
standard” diagnostics: Autism Diagnostic Observation
Schedule, ADOS and/or Autism Diagnostic Interview-
Revised, ADI-R. These focus on 3 domains including
reciprocal social interactions, communication and lan-
guage, and restricted/repeated behaviors and interests.
Full scale/nonverbal IQ/verbal IQ was measured via
WASI, WAIS-III, and/or WISC-III. Controls had no history
of mental disorders and were statistically matched
for age to the ASD group at each site. There were no
differences in age and sex between controls and ASD,
and the datasets are based on studies approved by local
IRBs, and data were fully anonymized.

MRI acquisition and processing
High-resolution T1-weighted images (T1w) and rs-fMRIs
were available from all sites. Images were acquired on
3T scanners from Siemens (NYU, USM, and PITT) or
Philips (IP and TCD). See Supplementary Materials for
detailed scanning parameters. We utilized established
multimodal image processing and co-registration rou-
tines to analyze MRI in the same reference frame, sum-
marized below.

Structural MRI

T1w processing was based on FreeSurfer (v5.1;http://
surfer.nmr.mgh.harvard.edu/; Fischl 2012). It included
bias field correction, registration to stereotaxic space,
intensity normalization, skull-stripping, and white mat-

ter segmentation. Triangular surface tessellation fitted a
deformable mesh onto the white matter volume, provid-
ing gray–white and pial surfaces. We measured cortical
thickness as the distance between gray–white and pial
surfaces and registered individual surfaces to the fsav-
erage5 template, improving correspondence of measure-
ments with respect to sulco-gyral patterns. Thickness
data were smoothed using a surface-based kernel with
a full-width-at-half-maximum (FWHM) of 20 mm, as in
prior studies (Lerch and Evans 2005).

Resting-state functional MRI

For Dataset-1, the data were obtained from the Pre-
processed Connectomes initiative (http://preprocessed-
connectomes-project.org/abide/), while for Dataset-2, we
performed equivalent preprocessing steps. Specifically,
Processing was based on the Configurable Pipeline for the
Analysis of Connectomes (CPAC; https://fcp-indi.github.
io/), and included slice-time correction, head motion
correction, skull-stripping, and intensity normalization.
Statistical corrections removed effects of head motion,
white matter, and cerebro-spinal fluid signals (Behzadi et
al. 2007), as well as linear/quadratic trends. After band-
pass filtering (0.01–0.1 Hz), we co-registered rs-fMRI
and T1w data through combined linear and nonlinear
transformations. Surface alignment was verified case-
by-case and we interpolated voxel-wise rs-fMRI time-
series along the mid-thickness surface model. We
resampled rs-fMRI surface data to the Conte69 template
(https://github.com/Washington-University/Pipelines)
and applied 5-mm FWHM surface-based smoothing. To
construct a functional connectivity matrix at individual,
we used a recently proposed functional parcellation
(https://github.com/ColeLab/ColeAnticevicNetPartition;
Ji et al. 2019), which boundaries are constrained by
those of a previously established atlas from the Human
Connectome Project (Glasser et al. 2016). This parcella-
tion (called “ColeAnticevicNetPartition”; 360 ROIs) includes
a set of ROIs for the language network, which is a
main target of our hypothesis. Based on this map,
we averaged rs-fMRI time series at each parcel and
computed an intrinsic functional connectivity matrix
based on Pearson’s correlation of functional time series
between every pair of parcels (360 × 360). Participants
with faulty surface segmentations, imaging artifacts,
or >0.3-mm averaged framewise displacement in the
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functional scans were excluded. Minor segmentation
inaccuracies of all remaining cases were manually
corrected by several raters (SLV and BCB), followed by
pipeline reruns.

Analytical approaches
The goal of our analyses was a comprehensive assess-
ment of imbalanced cognitive profiles in ASD, based
on data-driven statistical learning and mapping of
relevant multimodal brain imaging features. We per-
formed 5 complementary analyses: a) group-level IQ
profiling, b) IQ-based individual subtyping (categorical),
c) identification of IQ-space dimensions to capture
the variability of cognitive imbalance profiles (dimen-
sional), d) direct association between IQ and brain
imaging features, and e) Neurosynth-based functional
decoding of anatomical areas related to cognitive
imbalance.

Group-level IQ profiling

We first assessed differences in verbal and nonverbal IQ
as well as their ratio (vnIQ; i.e. verbal IQ divided by non-
verbal IQ) in ASD relative to controls, controlling for age
and site effects. We also tested a replication dataset with
a larger sample size (n = 760; see Participants for details)
as well as another vnIQ metric, i.e. difference between
verbal and nonverbal IQ rather than a ratio, to assess
reproducibility. As biological heterogeneity is a hallmark
of ASD, we furthermore tested whether the variance of
those 3 IQ scores (i.e. verbal, nonverbal and ratio) is
abnormally larger in ASD compared with the controls
based on bootstrapping (with 10,000 iterations). Briefly, at
each iteration we resampled the cases from each group
(with replacement) and computed the group difference
(i.e. ASD-controls) of IQ variance. The statistical model
tested whether the mean of these variance differences
between the groups is greater than zero (i.e. one-tailed z-
test). Findings were corrected for multiple comparisons
based on the false discovery rate at 5% (Benjamini and
Hochberg 1995).

IQ-based categorical clustering

Following the group-level profiling, we carried out a cate-
gorical subtyping using IQ measures by applying agglom-
erative hierarchical clustering analysis (kernel: Ward’s
linkage) on verbal and nonverbal IQ scores. To obtain an
optimal solution k (=clustering number), we primarily
relied on the Silhouette index (i.e. a measure of how
similar an object is to its own cluster, compared with
other clusters). The solution obtained by this index was
further validated by another consensus-based algorithm
called “NbClust” (Charrad et al. 2014), which provides the
solution that has the highest agreement across 30 dif-
ferent established clustering-quality indices (e.g. Davies–
Bouldin or Gap statistics). The clustering solution and the
distribution of identified subtypes in the IQ space have
been reproduced in Dataset-2. Identified subtypes were
comprehensively profiled in terms of IQ scores and brain

imaging features. For the latter, we compared the cortical
thickness as well as whole-brain functional connectivity
between each ASD subtype and neurotypical controls
to identify distinct structure–function patterns across
subtypes.

Dimensional IQ decomposition

We also applied principal component analysis (PCA)
to verbal and nonverbal IQ scores. Given the number
of input features (=2; verbal IQ and nonverbal IQ),
we obtained 2 principal components. We mapped the
component scores back to the individuals, and related
these dimensional scores to cortical thickness and
functional connectivity using group-interaction models
(i.e. [ASD-control or control-ASD] × PC-scores).

Direct association between vnIQ and brain imaging
features

The analyses in b) and c) targeted the underlying latent
structures of IQ distribution, using fully data-driven tech-
niques. Here, we assessed a direct association of vnIQ
with brain imaging features based on linear models.
To evaluate morphological substrates of IQ profiles, we
computed the correlations between the vnIQ ratio and
cortical thickness in both typically developing controls
and ASD, and assessed group-by-vnIQ ratio interactions
controlling for age and site effects. We repeated the same
analysis for functional connectivity with vnIQ ratio.

Meta-analytic functional decoding

To identify potential functional associations of the brain
areas discovered in the above analyses b–d), we per-
formed a Neurosynth-based decoding of relevant cog-
nitive functions. We first identified which brain areas
showed significant effects of cortical thickness across
the b–d) analyses (see Results for details). The areas of
overlap on the cortical surface were then converted to
the MRI volume using “mri_label2vol” in FreeSurfer, and
fed into the Neurosynth, a meta-analytical framework
identifying cognitive terms associated with the input
cortical areas (Yarkoni et al. 2011).

Statistical test

The above brain imaging analyses a)–d) were conducted
using SurfStat, a Matlab toolbox to perform surface-
based statistical linear modeling (http://www.math.
mcgill.ca/~keith/surfstat; Worsley et al. 2009). We
controlled for the effects of age, site, and framewise
displacement (for functional connectivity measures)
across all analyses. Surface-based anatomical findings
were corrected for multiple comparisons using random
field theory (Worsley et al. 1999).

Results
Dataset-1 was used for main phenotypic and neuroimag-
ing analyses. Quality indices for structural and func-
tional MRI data did not differ between ASD and controls
(P > 0.43, t = 0.79 for cortical surface extraction, P > 0.11,

http://www.math.mcgill.ca/~keith/surfstat
http://www.math.mcgill.ca/~keith/surfstat
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Fig. 1. Verbal and nonverbal IQ profiles in ASD. A) Findings in Dataset-1. Z-scores of verbal IQ, nonverbal IQ, and the vnIQ ratio (verbal/nonverbal IQ) in
ASD relative to neurotypical controls. Error bars present standard deviations. B) Replication in Dataset-2.

t = 1.58 for head motion). Details on subject inclusion
and quality control are provided in the Materials and
Methods and Supplementary Fig. S1. Dataset-2 was used
for the replication of IQ-related findings.

Group comparison of IQ profiles
We first studied the verbal over nonverbal IQ (vnIQ)
ratio to capture cognitive imbalance in a single score. In
Dataset-1, ASD showed a reduced vnIQ ratio compared
with controls (Cohen’s d = 0.27, P < 0.016). For further
context, although both verbal and nonverbal IQ were
reduced in ASD compared to controls, the decrease
in verbal IQ was more severe (d = 0.72, P < 0.0001)
than for nonverbal IQ (d = 0.45, P < 0.0001) in ASD.
Moreover, the prevalence of such IQ discrepancy (i.e.
verbal IQ < nonverbal IQ) was higher in ASD relative to
neurotypicals (χ2 = 4.67, P < 0.03). Findings were similar
in Dataset-2 (nvIQ reduction: d = 0.18, P < 0.015; verbal IQ
reduction: d = 0.35, P < 0.0001; nonverbal IQ reduction:
d = 0.16, P < 0.03; prevalence: χ2 = 8.83, P < 0.005) as well
as when using the IQ difference as a metric (=verbal
IQ − nonverbal IQ; reduction in ASD: d = 0.30, P < 0.007).
Notably, the replication across datasets should be
interpreted with a careful consideration of sample
characteristics, as Dataset-2 had a different age range,
sex composition, and sample size compared with the
Dataset-1 (Fig. 1).

Notably, a bootstrapping analysis to test for IQ het-
erogeneity revealed that all 3 IQ metrics (i.e. verbal and
nonverbal IQs, and their ratio) have significantly higher
variances in ASD compared with the controls (P < 0.0001).
This finding suggested that although at the group level
there was clear evidence for both IQ reduction and imbal-
ance in ASD, the individual patterns of IQ atypicality are
highly variable, corroborating previous studies reporting
heterogeneous cognitive profiles in ASD.

Categorical vs. dimensional approaches
Motivated by the previous analysis on IQ variance, we
sought to explore the latent structure underlying the
IQ distribution based on 2 complementary methods, i.e.
categorical subtyping and dimensional decomposition.
Subsequently, we assessed structural and functional sub-
strates based on cortical thickness mapping and rs-fMRI
connectomics.

Categorical subtyping of IQ profiles

According to the Silhouette index (Fig. 2A, Supplementary
Fig. S2), 2 or 4 clusters were considered as optimal.
Although the 2-subtype solution split the ASD cohort
along the general cognitive performance axis (i.e. low vs.
high full-scale IQ), the 4-subtype solution was rather
more sensitive to cognitive imbalances (reduced vs.
increased vnIQ; Fig. 2A). Given its relevance to our
hypothesis, we focused on this 4-subtype solution. Here,
ASD1 had low full-scale IQ but slightly imbalanced
verbal and nonverbal IQ (z-score of the vnIQ ratio
relative to neurotypicals = −0.79), whereas ASD3 had
average-high full-scale IQ without marked cognitive
imbalance (z-score of the vnIQ ratio = −0.45). Compared
with these 2 subtypes, ASD2 and ASD4 demonstrated
dichotomized patterns of IQ imbalance (i.e. the vnIQ
z-score in ASD2/ASD4 = −1.12/0.85) with relatively
preserved overall cognitive performance (full-scale IQ
[mean ± SD] = 106 ± 13/107 ± 14 for ASD2/ASD4). Please
note that although the absolute z-score for the nvIQ
ratio in each identified subtype was mostly below 1,
effect size for the differences between each subtypes
and TD averaged at 1.1 ± 0.8, suggesting noticeable
differences.

See Supplementary Table S1 for more detailed clinico-
demographic profiles of the identified subtypes. This
subtype solution showed moderately similar patterns
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Fig. 2. Subtyping based on verbal and nonverbal IQ. A) Subtyping results shown at k = 2 and 4, the solutions resulting in the highest Silhouette index.
B) A k = 4 solution provided subtypes reflecting cognitive imbalances, particularly when comparing ASD2 vs. ASD4. Cortical thickness and functional
connectivity features were profiled across all 4 subtypes, by comparing these measures to neurotypical controls (effect sizes are presented as Cohen’s
D). For the functional connectivity analysis, connections showing a significant between-group difference were counted within- and between-network
separately and plotted left to the connectome for within-community comparisons and above the corresponding connectome for between-community
analyses, for each subtype. The peak modulation among the functional network is marked by ∗. The language peak was observed in 3 out of the 4
identified subtypes. The bottom panels show targeted comparisons between ASD2 (high nonverbal compared with verbal IQ) and ASD4 (high verbal
compared with nonverbal IQ).

when using the clustering solution from nbClust as well
as analyzing the independent Dataset-2 (Supplementary
Fig. S3).

The IQ-derived ASD subtypes presented with differen-
tial cortical thickness alterations relative to neurotypical
controls, in a spectrum that encompassed widespread
thickness increases (ASD1 and ASD2) together with more
mosaic patterns of increases and decreases in thickness
(ASD3 and ASD4; Fig. 2B, left). Contrasting ASD2 and

ASD4 indicated widespread increases in cortical thick-
ness in the former group, which showed the lowest vnIQ
ratio (=the most severely imbalanced cognitive profiles)
among all other groups. It should be noted that these
increases were not simply due to an effect from lower
verbal IQ nor symptom severity, given that when com-
paring ASD1 (i.e. the group with the lowest verbal IQ
and highest ADOS score) to ASD4, we did not observe
marked changes in thickness both in cortex-wide and
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language networks. Moreover, when comparing the corti-
cal thickness between the subtypes directly derived from
verbal-IQ based clustering, those 2 subtypes showing a
maximal verbal IQ difference did not reveal significant
changes, speaking against a major role of verbal IQ on
our neuroimaging finding (i.e. a main effect of cognitive
imbalance on the brain substrate).

Regarding functional connectivity, we targeted their
differential profiles within and between different func-
tional communities, which are defined by the par-
cellation map (i.e. ColeAnticevicNetPartition; Ji et al.
2019). All subtypes presented with a variable pattern
of decreases and increases across multiple networks
relative to controls. Notably, ASD1 and 2, which showed
cortical thickening in the above analysis, presented
with overall reductions of functional connectivity
relative to controls (mean Cohen’s D = 0.34/0.33 for
within-/between-community connectivity), whereas
ASD3 and 4 showed mixed patterns of both increased
(D = 0.31/0.30 for within-/between-community connec-
tivity) and decreased (D = 0.31/0.29 for within-/between-
community) functional connectivity. Most marked
modulations were again observed in language net-
works (Fig. 2B, right). Directly contrasting ASD2 and
ASD4 revealed hypoconnectivity in the former
group (D = 0.34/0.33 for within-/between-community
connectivity).

Dimensional IQ subtyping

Following the categorical clustering, we ran a PCA based
on the verbal and nonverbal IQs. Instead of searching
for discrete boundaries across the individuals, this
analysis identified continuous dimensions that can
explain the largest individual variabilities in terms of
cognitive imbalance. Two components were identified,
each explaining a distinct dimension underlying ASD
IQ profile variance (PC1: 76%, PC2: 24%; Fig. 3A). PC1
reflected more closely the average of verbal and
nonverbal IQ, whereas PC2 reflected more closely their
imbalance.

Notably, PC2 showed a clear spectrum (spanning from
ASD2 to ASD4 from the above subtyping analysis), with
one extreme characterized by high functioning nonver-
bal IQ, yet with a low verbal IQ as well as the other
extreme showing enhanced verbal functioning but with
reduced nonverbal IQ profiles. We observed similar IQ
components in Dataset-2 (Supplementary Fig. S4).

Group-interaction analyses between PC scores and
brain imaging features (Fig. 3B) revealed that (i) in PC1,
the ASD group presented no significant effect but only a
tendency of cortical thickening associated with higher
general cognitive performance, whereas (ii) in PC2,
increased thickness reflected a more marked vnIQ imbal-
ance (more deficits in verbal compared with nonverbal
IQ) mostly in the language areas in ASD compared with
the neurotypicals. Functional connectivity also revealed
similar group-dependent changes with respect to its

relationship with each PC score. For the general cog-
nitive dimension (PC1), both positive effects were most
marked in the visual network (t = 1.96/1.97 for within-
and between-community connectivity, respectively),
whereas negative effects predominated in transmodal
systems such as default mode network (t = 2.02/1.97 for
within- and between-community connectivity). Notably,
however, for PC2 reflecting verbal/nonverbal imbalance,
the communities demonstrating significant interaction
effects included the language and salience networks. In
the language network, higher PC2 scores (=more severe
vnIQ reduction) were related decreased connectivity
in ASD relative to controls (t = 1.92/2.01 for within-
/between-community connectivity). On the contrary, in
the salience network, higher PC2 scores represented
connectivity increases in ASD (t = 1.95/1.95 for within-
/between-community connectivity).

Notably, both identified subtypes and PC scores were
neither related to structural MRI quality indexed by
Euler number (from FreeSurfer; Rosen et al. 2018) nor
framewise displacement of fMRI signals (Supplementary
Fig. S6).

Direct association between vnIQ and brain
imaging features
Finally, we directly associated vnIQ metrics (score and
ratio) with brain imaging features. In this analysis,
we assessed surface-wide interactions between the
diagnostic groups (ASD, neurotypicals) and vnIQ met-
rics on cortical thickness and functional connectivity.
Considering cortical thickness, there were only trends
for interactions between group membership and verbal
or non-verbal IQ scores. On the other hand, group by
vnIQ ratio interactions were significant in multiple areas
including the left insular, fronto-opercular, paracentral,
posterior midline and right fronto-opercular cortices
(Fig. 4A), suggesting that the ratio value is uniquely
associated with cortical alterations in ASD. Notably,
while increased cortical thickness in neurotypicals
was associated with increased vnIQ, ASD showed an
inverse pattern, with atypical thickening relating to
lower scores (i.e. more severe cognitive imbalance).
Repeating the above analysis for rs-fMRI connectivity
confirmed significant interaction effects between vnIQ
and diagnostic groups (ASD, controls) across multiple
networks (Fig. 4B, left and middle). Post-hoc analyses
highlighted alterations of within-community commu-
nication for the default mode (mean ± SD t = 2.12 ± 0.40)
and sensory (t = 2.09 ± 0.34) networks, whereas partic-
ularly the language network (t = 2.07 ± 0.35) displayed
interaction effects in connections to other networks.
Although this functional interaction showed overall
distinct patterns that are shifted towards a zero-
centered distribution when performing a global mean
signal regression (GSR), their relative patterns (i.e.
those spanning within and across the subnetworks)
appear to be preserved (r = 0.83 for effect size map
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Fig. 3. PCA for the distribution of verbal and nonverbal IQ in ASD. A) The direction and scores of the 2 principal components derived from verbal
and nonverbal IQ profiles. PC1 reflected individual variability along a general cognitive axis, whereas PC2 reflected verbal to nonverbal IQ imbalance.
B) Between-group interaction analysis of PC1 and PC2 on cortical thickness and functional connectivity. Upper panels show significant cortical thickness
modulations were delineated by solid boundaries whereas uncorrected tendencies are shown in semi-transparent. Lower panels show the proportion
of functional connections that undergo a significant between-group interaction for both PC1 and PC2. Findings were stratified according to functional
communities as in the prior figures.
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Fig. 4. Structure–function substrates of vnIQ imbalance in ASD. A) Cortical thickness analysis. Left. Interaction between diagnostic group (ASD, controls)
and vnIQ scores. FWE-corrected clusters are shown in solid and with black outlines, uncorrected trends in semitransparent. Right. Correlation between
cortical thickness and vnIQ in each group separately. B) Functional associations. Left. Using a functional parcellation that includes the language
network (Ji et al. 2019), interaction analysis was performed at the level of parcel-to-parcel connections. Uncorrected P-values from this interaction
analysis were sorted according to functional communities (primary visual, secondary visual, somatomotor, cingulo-opercular, dorsal attention, language,
frontoparietal, auditory, and default mode). Parcel-wise significant interactions were summed within each network, and stratified into within- vs.
between-community connections. Right. Direct correlation analysis between vnIQ and functional connectivity across different communities, carried
out in ASD and controls separately. Positive/negative effects are indicated in blue/red.

correlation between with and without GSR), suggesting
robustness (Supplementary Fig. S7).

We also explored connectome-wide correlations in
each group separately (Fig. 4B, right). In ASD, the vnIQ
ratio modulated both positively and negatively the
functional connectivity of multiple networks, whereas
associations in controls were mainly negative. Specif-
ically, in ASD somatomotor, visual, and default mode
systems showed more frequently positive associations,
whereas cingulo-opercular, language, and auditory
networks showed rather negative associations.

In both cortical thickness and functional connec-
tivity findings, the effects were relatively consistent
across the included sites and when repeating analyses
within children or adults (that are split by the median
age [16 years] to ensure equal group sample size;
Supplementary Fig. S8 and S9).

Meta-analytic functional decoding
For Neurosynth-based spatial decoding, we generated
an overlap map of significant areas, intersecting the
significant morphological findings from all 3 previous
analyses (i.e. ASD2 vs. ASD4 subtype comparison,

PC2 group-interaction and group-by-IQ interaction
effects), and then fed it to the Neurosynth decoder.
This analysis identified multiple terms, with “lan-
guage” being the top-ranked one alongside with other
language- and higher cognitive processes (e.g. “verbal
semantics,” “working memory,” “cognitive control”;
Fig. 5).

Discussion
Inter-individual heterogeneity in biological, cognitive,
and behavioral dimensions is increasingly recognized to
hinder research and intervention in autism
(Hong et al. 2018, 2020; Lombardo et al. 2019; Rødgaard
et al. 2019). The current diagnostic classification of ASD
is broad, and thus captures different severities and
potential etiologies (Lai et al. 2013; Mottron and Bzdok
2020). Although this approach likely increases diagnostic
sensitivity, it may reduce specificity, which motivates
additional stratification to further calibrate diagnostics
and guide intervention. Here, we targeted the brain
correlates of autism heterogeneity using a “cognitive-
first” perspective by studying verbal and nonverbal
dimensions of intelligence in multisite datasets. In

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhac156#supplementary-data
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Fig. 5. Functional decoding of the cortical area related to cognitive imbalance. The significant area commonly found across all previous 3 analyses
was identified (i.e. left middle frontal area), and fed into the Neurosynth decoding framework. The significance of the decoding result was indicated at
P < 0.001 (one tailed; z > 3.1).

contrast to the current use of IQ measures as clinical
specifiers without diagnostic indication, but in line with
observations of discrepant cognitive profiles in autism
(Joseph et al. 2002; Mottron et al. 2006; Coolican et al.
2008; Munson et al. 2008; Soulières et al. 2011; Ankenman
et al. 2014; Nowell et al. 2015; Johnson et al. 2021), the
current work provides evidence for a marked cogni-
tive imbalance in ASD compared with neurotypicals.
Indeed, capitalizing on 3 complementary data analytical
strategies (i.e. IQ profile clustering, dimensional IQ
profile decomposition, and linear associations to vnIQ
ratio), we demonstrated converging findings showing
imbalanced verbal to nonverbal intelligence in ASD.
Moreover, utilizing brain imaging and connectomics,
we could reveal brain structure–function substrates
underlying such imbalances, which are characterized
by atypical morphology and functional connectivity of
language, sensory-motor, and higher cognitive systems.
Phenotypic findings were replicated in an independent
cohort. These findings motivate the incorporation of
cognitive imbalances in autism research, which may help
to stratify individuals prior to interventions.

Our analysis first quantified cognitive imbalances
by calculating a simple ratio between verbal and

nonverbal IQ profiles, as previously done in phenotypic
assessments of individuals with typical and atypical
brain development (Ankenman et al. 2014; Nader et al.
2015). Applying the same metric to 2 independent ABIDE
sub-cohorts, we indeed found generalizable evidence of
marked IQ imbalances in ASD, a result that remained
the same when switching the metric from a ratio to
a difference of the 2 IQ scores. After confirming their
uneven cognitive profiles, we also sought to identify
potential brain substrates underlying this heterogeneous
phenotype based on multimodal neuroimaging. One of
the chosen approaches, categorical clustering, is among
the most frequently used methods in recent subtyping
studies to identify homogeneous subgroups across
various brain disorders such as autism, epilepsy, and
depression (Bernhardt et al. 2015; Drysdale et al. 2017;
Hong et al. 2018, 2020). In the current work, this approach
also revealed clinically and biologically meaningful
ASD subgroups, whose IQ profiles were particularly
related to their cognitive imbalance. Specifically, a 4-
subtype solution highlighted discrepant IQ profiles in
ASD2 (with reduced verbal functioning) vs. ASD4 (with
reduced nonverbal functioning). Directly comparing both
subtypes revealed fronto-central cortical thickening in
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individuals with a lower IQ ratio, together with connectiv-
ity anomalies related to between-network connectivity
in the same individuals. The results were further
corroborated by a complementary PCA, which showed
one of the primary IQ dimensions as the one sensitive to
cognitive imbalances. Notably, this component reflected
brain structure and function in a similar manner as
the clustering findings, pointing to cortical thickening
and functional connectivity modulations of frontal
language networks by degrees of cognitive imbalance
in ASD. A direct brain-IQ regression analysis provided
similarly converging evidence, collectively suggesting
robustness of findings across alternative analytical
frameworks. Finally, Neurosynth-based decoding found
that the spatial distribution of cognitive imbalance-
related brain areas (in the cortical thickness analyses)
was aligned to functional networks previously implicated
in language processing. This finding follows the intention
of the vnIQ ratio measure to be sensitive to language-
related impairments in the presence of normal nonverbal
functioning, a pattern frequently described in ASD
(Dawson et al. 2007). In sum, our multi-method findings
provide unique neural support for the clinical relevance
of IQ discrepancy in ASD.

A recent analysis comparing the correlations between
IQ measures and ADOS severity score using the same
data source revealed that this symptom score, and more
specifically the “communication” was mainly driven by
verbal IQ rather than by vnIQ (Johnson et al. 2021). This
result is predictable, considering the conceptual overlap
between communication and language. Compared with
this result, our findings suggest that while less directly
associated to autism “severity,” vnIQ may be more infor-
mative in linking atypical cognitive functions of ASD to
their brain substrates, compared with verbal IQ. The lack
of association between vnIQ and symptom severity may
be in part due to the fact that ADOS scores (as measured
by standardized diagnostic instruments) are at risk of
being affected by multiple associated/comorbid factors
(Havdahl et al. 2016) and to group individuals at a too
high hierarchical level in neurodevelopmental disorders
(Frith 2021; Mottron 2021).

Our results collectively suggest that cognitive imbal-
ance may represent an important source of phenotypic
heterogeneity in autism, and that its non-consideration
might have contributed to inconclusive findings across
previous case-control studies in ASD. Indeed, although
some prior MRI findings suggested altered thickening in
frontal and temporal cortices in ASD relative to neu-
rotypicals (Hardan et al. 2006; Valk et al. 2015; van Rooij
et al. 2018; Bedford et al. 2020), other studies have shown
cortical thinning or only subtle effects (Wallace et al.
2010), limiting consistency (Duerden et al. 2012). Simi-
lar to the structural imaging literature, rs-fMRI studies
often followed a case-control design without incorpora-
tion of IQ profiles. Specifically, some reports emphasized
reductions in both short- and long-range cortico-cortical

connections (Khan et al. 2013; Tomasi and Volkow 2019;
Hong et al. 2019b), whereas others suggested atypical
organization of local and subcortical–cortical connectiv-
ity (Mizuno et al. 2006; Keown et al. 2013; Nair et al.
2013; Cerliani et al. 2015; Park et al. 2021). Although
such divergences may be partially attributed to method-
ological choices and motion-related confounds (Müller et
al. 2011; Nair et al. 2013), inherent heterogeneity across
individuals with ASD may also contribute (Bernhardt et
al. 2017; Dickie et al. 2018; Hong et al. 2018; Lombardo et
al. 2019; Nunes et al. 2019; Rødgaard et al. 2019; Benkarim
et al. 2020). A recent model that consolidated behavioral,
neuroimaging, and genetic findings suggests that genetic
mutations may trigger brain reorganization in individu-
als with a low plasticity threshold, particularly in associ-
ation cortices with a high number of synapses (Mottron
et al. 2014). These reorganizations, and their role in the
cortical hierarchies may in turn lead to alterations in per-
ceptual pathways, and the cascading effect may account
for (i) atypical visual and auditory perceptual processing
(Wang et al. 2007; O’Connor 2011), ranging from enhance-
ments to impairments (Mottron et al. 2013), and (ii) dif-
ficulties in more integrative, social cognitive functions
(Leekam 2016). It may thus be tempting to speculate that
findings showing differential modulations of brain struc-
ture and function by cognitive imbalance in ASD may
relate to developmental processes similar to cross-modal
compensation (Mottron et al. 2014). However, as neurobi-
ological substrates identified through cortical thickness
and functional connectivity analysis remain somewhat
unclear in the context of ASD, it remains to be inves-
tigated how far our findings reflect ASD-related effects
on brain network plasticity. Previous post-mortem work
suggested intracortical cellular and laminar anomalies
(Bauman and Kemper 1985; Hutsler et al. 2007), together
with ectopic neurons in the white matter in ASD indi-
viduals (Bauman and Kemper 2008; Avino and Hutsler
2010). These findings are complemented by work show-
ing alterations in dendritic spine densities on cortical
projection neurons in ASD, showing increased spine den-
sities in supragranular layers in frontal regions and in
infragranular layers in temporal cortices (Hutsler and
Zhang 2010). These authors discussed the possibility that
increased spine densities may result from deficient post-
natal culling of connections and may thus have down-
stream effects on the interplay of excitation and inhi-
bition in local microcircuits, which may be in line with
recent connectome modeling studies (Trakoshis et al.
2020; Park et al. 2021). Other reports have shown focal
“patches” of disorganized cortical layers in ASD (Stoner et
al. 2014) and emphasized altered columnar arrangement,
again with prominent findings in temporal and frontal
cortices (Casanova et al. 2002, 2006).

Despite such biologically supportive findings on the
structure–function substrates of cognitive imbalance
in autism, our study has several limitations. First, as
other samples in ASD neuroimaging, the ABIDE sample
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is known to be predominantly male. However, to be
maximally inclusive, Dataset-I and Dataset-II included
females as well, despite the imbalanced sex composition.
Second, the ABIDE datasets have only limited phenotypic
characterization available, which precluded additional
investigation into factors and confounders that might
relate to IQ imbalance in ASD. For instance, information
on medication, co-occurring conditions, and indices of
adaptive functioning and overall wellbeing were not
systematically available. Finally, despite our efforts in
image quality control and confound correction, we
cannot rule out that MRI data quality and head motion
effects did not contribute to the observed findings.

In future work, it will be important to extend the data-
driven and multimodal neuroimaging approaches pre-
sented here to more deeply characterized individuals and
to assess generalizability to samples with a higher pro-
portion of females. Such work may also benefit from the
inclusion of task-based functional imaging paradigms to
study neural dynamics, for instance during verbal vs.
nonverbal reasoning (Kobayashi et al. 2007). Moreover,
multimodal explorations into the complex neural sub-
strates of autism may naturally benefit from ongoing
advances in MRI acquisition, processing, and modeling,
which may allow for gains in sensitivity and specificity to
map structural as well as functional changes associated
with ASD.

We close by highlighting that our study does not imply
that researchers need to control for IQ measures as a
variable of no interest when comparing individuals with
ASD to neurotypical controls. As our results emphasize,
verbal and nonverbal aspects of intelligence and their
disparities are instead an important dimension of the
diverse autism phenotype, which encompasses a high
prevalence of impaired as well as enhanced abilities
compared with neurotypicals (Mottron et al. 2014).
Although etiological factors that contribute to these
imbalances remain to be studied further, our findings
showing a robust structure–function substrate of imbal-
ances point to atypical large-scale brain reorganization
centered around language-related networks, potentially
downstream to perturbations of cross-network plasticity.

Supplementary material
Supplementary material is available at Cerebral Cortex
online.
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